Exam Seat No: _____

C.U.SHAH UNIVERSITY Summer Examination-2017

Subject Name: Real Analysis

Subject Code: 5SC02REA1		Branch: M.Sc. (Mathematics)		
Semester: 2	Date: 09/05/2017	Time: 02:00 To 05:00	Marks: 70	

Instructions:

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

SECTION – I

Q-1	Answer the Following questions:	(07)		
a)	Define: σ -Algebra of sets			
b)) For any countable set $A \subseteq R$ then $m^*(A) = 0$.			
c)	For any $A \subseteq R$, if $m^*(A) = 0$ then A must be a measurable set.			
d)	Q and Q^c are not measurable sets. – True or False?	(01)		
Q-2	Attempt all questions	(14)		
a)	Let m be the set of all measurable subsets of R then prove that m is an algebra of R.	(07)		
b)	Prove that outer measure of an interval is its length.	(07)		
OR				
Q-2	Attempt all questions	(14)		
a)	Let \mathcal{A} be an algebra on X and $\{A_i\} \in \mathcal{A}$ then there exist $\{B_i\} \in \mathcal{A}$ such that	(05)		
	i) $\bigcup_{i=1}^{n} A_i = \bigcup_{i=1}^{n} B_i$ and ii) $B_i \cap B_j = \phi$, for $i \neq j$.			

b) Give an example of non-measurable set and explain. (09)

(14)

Q-3 Attempt all questions

Page 1 of 3

a) If $E_1, E_2, ..., E_n$ be a finite sequence of measurable sets and they are mutually (05)

disjoint then for any $A \subseteq R$, $m^* \left(A \cap \left(\bigcup_{i=1}^n E_i \right) \right) = \sum_{i=1}^n m^* \left(A \cap E_i \right)$

- **b**) Let ϕ and ψ are simple functions on E which are vanish outside of a set of finite (05) measure then prove that $\int a\phi + b\psi = a\int \phi + b\int \psi$.
- c) Give an example of an algebra which is not an σ -Algebra of X and explain. (04) OR

Q-3 Attempt all questions

(14)

- a) Give an example of measurable map which is not a Riemann integrable map and (05) explain.
- b) Prove that every borel set is a measurable set.(05)c) Let f, g be two measurable function on E, where $E \in m$ then for any(04)
- f + c, cf & f + g are also measurable function on E.

SECTION – II

Q-4	Answer the Following questions:	(07)
a)	State Fatou's lemma.	(02)
b)	Define: Lebesgue integral.	(02)
c)	Define: Positive part and negative part of function.	(02)
d)	Define: $BV[a,b]$.	(01)

Q-5 Attempt all questions (14)

- a) State and prove Bounded convergence theorem. (07)
- **b**) Suppose $f, g \in BV[a, b]$ then prove that the following: (07)

i)
$$fg \in BV[a,b]$$
 and ii) $\frac{f}{g} \in BV[a,b]$, where $g \neq 0$.

OR

Q-5	Attempt all questions	(14)
a)	State and prove monotone convergence theorem.	(07)
b)	State and prove Lebesgue dominated convergence theorem.	(07)
Q-6	Attempt all questions	(14)
a)	F is absolutely continuous function on $[a,b]$ iff F is indefinite integral.	(07)
b)	State and prove Beppo-Levi's theorem.	(04)
c)	State J E Littlewood's three principles.	(03)

Page 2 of 3

Q-6 Attempt all Questions

a) Let f be a bounded measurable function on [a,b] and $F(x) = \int_{a}^{x} f(t) dt + F(a)$ then F'(x) = f(x) almost everywhere on [a,b].

(14)

- **b)** If f is integrable over E then |f| is integrable over E and $\left| \int_{E} f \right| \le \int_{E} |f|$. (04)
- c) If $A, B \subseteq R$ be such that $m^*(A) = 0$ then prove that $m^*(A \cup B) = m^*(B)$. (03)

